Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://188.190.33.55:7980/jspui/handle/123456789/14358
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorMohammadabadi, Mohammadreza-
dc.contributor.authorKheyrodin, Hamid-
dc.contributor.authorAfanasenko, Volodymyr-
dc.contributor.authorBabenko, Olena-
dc.contributor.authorKlopenko, Nataliia-
dc.contributor.authorKalashnyk, Oleksandr-
dc.contributor.authorIevstafiieva, Yulia-
dc.contributor.authorBuchkovska, Vita-
dc.date.accessioned2025-07-01T16:33:08Z-
dc.date.available2025-07-01T16:33:08Z-
dc.date.issued2024-
dc.identifier.citationMohammadreza Mohammadabadi, Hamid Kheyrodin, Volodymyr Afanasenko, Olena Babenko, Nataliia Klopenko, Oleksandr Kalashnyk, Yulia Ievstafiieva, Vita Buchkovska The role of artificial intelligence in genomics Agricultural Biotechnology Journal, 2024. Volume 16, Issue 2. Р. 195-279 DOI 10.22103/jab.2024.23558.1575 https://jab.uk.ac.ir/article_4325.html?lang=enuk
dc.identifier.urihttp://188.190.33.55:7980/jspui/handle/123456789/14358-
dc.description.abstractData generation in biology and biotechnology has greatly increased in recent years due to the very rapid development of high-performance technologies. These data are obtained from studying biological molecules, such as metabolites, proteins, RNA, and DNA, to understand the role of these molecules in determining the structure, function, and dynamics of living systems. Functional genomics is a field of research that aims to characterize the function and interaction of all the major components (DNA, RNA, proteins, and metabolites, along with their modifications) that contribute to the set of observable characteristics of a cell or individual (i.e., phenotype). Furthermore, in a breeding program, genetic improvement can be maximized through accurate identification of superior animals that are selected as parents of the next generation, thereby achieving breeding goals. Artificial neural networks have been proposed to alleviate this limitation of traditional regression methods and can be used to handle nonlinear and complex data, even when the data is imprecise and noisy. Omics data can be too large and complex to handle through visual analysis or statistical correlations. This has encouraged the use of machine intelligence or artificial intelligence. The objectives of this study was to review the main applications of artificial intelligence methods in functional genomics, cancer, agriculture, domestic animals and its intertwined fields, i.e. epigenomics, transcriptomics, epitranscriptomics, proteomics, and metabolomics, discuss important aspects of data management, such as data integration, cleaning, noise removal, balancing and ratio of missing data, functional genomics-system modeling, artificial intelligence and systems biology, addressing legal, ethical and economic issues related to the application of artificial intelligence methods in the field of genomics and presenting a view of possible scenarios in the future.uk
dc.language.isoenuk
dc.subjectштучний інтелект, геноміка, тваринництвоuk
dc.titleThe role of artificial intelligence in genomicsuk
dc.typeArticleuk
Розташовується у зібраннях:Статті

Файли цього матеріалу:
Файл Опис РозмірФормат 
The role of artificial intelligence in genomics.pdf1,8 MBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.