Please use this identifier to cite or link to this item:
http://188.190.33.55:7980/jspui/handle/123456789/14268
Title: | Bioconversion of livestock by-products into biogas: Experimental study of optimal fermentation conditions |
Authors: | DYMCHUK, Anatolii SHCHERBATIUK, Natalia PUSTOVA, Natalia PONKO, Liudmyla YAMBORAK, Raisa |
Issue Date: | 2025 |
Journal Title: | Scientific Horizons |
Citation: | 1. Alghoul, O., El-Hassan, Z., Ramadan, M., & Olabi, A.G. (2019). Experimental investigation on the production of biogas from waste food. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41(17), 20512060. doi: 10.1080/15567036.2018.1549156. 2. Chen, Y.F., Lin, P.W., Chen, W.H., Yen, F.Y., Yang, H.S., & Chou, C.T. (2021). Biogas upgrading by pressure swing adsorption with design of experiments. Processes, 9(8), article number 1325. doi: 10.3390/pr9081325. 3. Chubur, V.S. (2023). Environmentally safe utilisation of waste for energy purposes in environmental protection technologies. Sumy: Sumy State University. 4. Danylyshyn, V., & Koval, M. (2023). Analysis of biogas production and prospects for the development of biogas technologies in Ukraine. Ukrainian Black Sea Region Agrarian Science, 27(3), 90-102. doi: 10.56407/ bs.agrarian/3.2023.90. 5. Djaafri, M., Kalloum, S., Soulimani, A.E., & Khelafi, M. (2019). Bioconversion of dried leaves from Algerian date palm (Phoenix dactylifera L.) to biogas by anaerobic digestion. International Journal of Engineering Research in Africa, 41, 131-144. doi: 10.4028/www.scientific.net/JERA.41.131. 6. Djimtoingar, S.S., Derkyi, N.S., Kuranchie, F.A., & Yankyera, J.K. (2022). A review of response surface methodology for biogas process optimization. Cogent Engineering, 9(1), article number 2115283. doi: 10.1080/23311916.2022.2115283. 7. Dobre, P., Nicolae, F., & Matei, F. (2014). Main factors affecting biogas production – an overview. Romanian Biotechnological Letters, 19(3), 9283-9296. 8. Donchak, L., & Shkvaruk, D. (2024). Current state and prospects for the development of agriculture in the Vinnytsia region. Ekonomika APK, 31(2), 23-31. doi: 10.32317/2221-1055.202402023. 9. Golub, G., Skydan, O., Kukharets, V., Yarosh, Y., & Kukharets, S. (2020). The estimation of energetically selfsufficient agroecosystem’s model. Journal of Central European Agriculture, 21(1), 168-175. doi: 10.5513/ JCEA01/21.1.2482. 10. Golub, G.A., Kukharets, S.M., Yarosh, Y.D., & Kukharets, V.V. (2017). Integrated use of bioenergy conversion technologies in agroecosystems. INMATEH - Agricultural Engineering, 51(1), 93-100. 11. Gupta, P., & Gupta, A. (2014). Biogas production from coal via anaerobic fermentation. Fuel, 118, 238-242. doi: 10.1016/j.fuel.2013.10.075. 12. Kovtun, P., & Merzlov, S. (2023). Temperature and microbiological parameters of poultry manure under different fermentation modes. Scientific Reports of the National University of Life and Environmental Sciences of Ukraine, 19(5). doi: 10.31548/dopovidi5(105).2023.014. 13. Kucher, O., Hutsol, T., Glowacki, S., Andreitseva, I., Dibrova, A., Muzychenko, A., Szeląg-Sikora, A., Szparaga, A., & Kocira, S. (2022). Energy potential of biogas production in Ukraine. Energies, 15(5), article number 1710. doi: 10.3390/en15051710. 14. Kumar, V., Mitra, D., Rani, A., Suyal, D.C., Gautam, B.P., Jain, L., Gondwal, M., Raj, K.K., Singh, A.K., & Soni, R. (2022). Bio-inoculants for biodegradation and bioconversion of agrowaste: Status and prospects. In D.C. Suyal & R. Soni (Eds.), Bioremediation of environmental pollutants: Emerging trends and strategies (pp. 351-367). Cham: Springer. doi: 10.1007/978-3- 030-86169-8_16. 15. Leni, G., Caligiani, A., & Sforza, S. (2021). Bioconversion of agri-food waste and by-products through insects: A new valorization opportunity. In R. Bhat (Ed.), Valorization of agri-food wastes and by-products (pp. 809-828). London: Academic Press. doi: 10.1016/B978-0-12-824044-1.00013-1. 16. Liu, E., & Liu, S. (2017). Process optimization and study of biogas fermentation with a mixture of duck manure and straw. Renewable and Sustainable Energy Reviews, 72, 439-444. doi: 10.1016/j.rser.2017.01.045. 17. Mahato, N., Sharma, K., Sinha, M., Dhyani, A., Pathak, B., Jang, H., Park, S., Pashikanti, S., & Cho, S. (2021). Biotransformation of citrus waste-I: Production of biofuel and valuable compounds by fermentation. Processes, 9(2), article number 220. doi: 10.3390/pr9020220. 18. Morales-Polo, C., Cledera-Castro, M.D., Revuelta-Aramburu, M., & Hueso-Kortekaas, K. (2021). Bioconversion process of barley crop residues into biogas – energetic-environmental potential in Spain. Agronomy, 11(4), article number 640. doi: 10.3390/agronomy11040640. 19. Neri, A., Bernardi, B., Zimbalatti, G., & Benalia, S. (2023). An overview of anaerobic digestion of agricultural by-products and food waste for biomethane production. Energies, 16(19), article number 6851. doi: 10.3390/ en16196851. 20. Nsair, A., Onen Cinar, S., Alassali, A., Abu Qdais, H., & Kuchta, K. (2020). Operational parameters of biogas plants: A review and evaluation study. Energies, 13(15), article number 3761. doi: 10.3390/en13153761. 21. Pryshliak, N., Tokarchuk, D., & Palamarenko, Y. (2021). Recommendations for selecting the optimal feedstock for biogas production on the basis of experimental data on the energy value of waste. Investments: Practice and Experience, 24, 58-66. doi: 10.32702/2306%0C6814.2020.24.58. 22. Ranjbar, F.M., Karrabi, M., & Shahnavaz, B. (2022). Bioconversion of wheat straw to energy via anaerobic codigestion with cattle manure in batch-mode bioreactors (Experimental investigation and kinetic modeling). Fuel, 320, article number 123946. doi: 10.1016/j.fuel.2022.123946. 23. Rashwan, A.K., Bai, H., Osman, A.I., Eltohamy, K.M., Chen, Z., Younis, H.A., Al-Fatesh, A., Rooney, D.W., & Yap, P.S. (2023). Recycling food and agriculture by-products to mitigate climate change: A review. Environmental Chemistry Letters, 21(6), 3351-3375. doi: 10.1007/s10311-023-01639-6. 24. Recebli, Z., Selimli, S., Ozkaymak, M., & Gonc, O. (2015). Biogas production from animal manure. Journal of Engineering Science and Technology, 10(6), 722-729. 25. Romaniuk, W., Rogovskii, I., Polishchuk, V., Titova, L., Borek, K., Shvorov, S., Roman, K., Solomka, O., Tarasenko, S., Didur, V., & Biletskii, V. (2022). Study of technological process of fermentation of molasses vinasse in biogas plants. Processes, 10(10), article number 2011. doi: 10.3390/pr10102011. 26. Safari, M., Abdi, R., Adl, M., & Kafashan, J. (2018). Optimization of biogas productivity in lab-scale by response surface methodology. Renewable Energy, 118, 368-375. doi: 10.1016/j.renene.2017.11.025. 27. Skliar, O.G., Skliar, R.V., & Grigorenko, S.M. (2019). Program and method of experimental researches on laboratory biogasous installation. Bulletin of the Kharkiv National Technical University of Agriculture, 199, 267-275. 28. Tuly, J.A., Zabed, H.M., Nizami, A.S., Hassan, M.M., Azam, S.R., Awasthi, M.K., Janet, Q., Chen, G., Akpabli-Tsigbe, N.D., & Ma, H. (2022). Bioconversion of agro-food industrial wastes into value-added peptides by a Bacillus sp. Mutant through solid-state fermentation. Bioresource Technology, 346, article number 126513. doi: 10.1016/j. biortech.2021.126513. 29. Yahmed, N.B., Dauptain, K., Lajnef, I., Carrere, H., Trably, E., & Smaali, I. (2021). New sustainable bioconversion concept of date by-products (Phoenix dactylifera L.) to biohydrogen, biogas and date-syrup. International Journal of Hydrogen Energy, 46(1), 297-305. doi: 10.1016/j.ijhydene.2020.09.203. 30. Zhou, M., Guo, L., Liu, S., & Zou, Z. (2018). Experimental study on methane yield influenced by biogas project fermentation temperature. In Proceedings of the 3rd joint international information technology, mechanical and electronic engineering conference (pp. 46-49). London: Atlantis Press. doi: 10.2991/jimec-18.2018.10. |
Keywords: | renewable energy sources; organic waste; methane; anaerobic fermentation; thermophilic mode; mesophilic mode. |
Abstract: | The bioconversion of organic waste into biogas is a substantial part of the company's strategy for sustainable development and reducing its environmental impact. The key factors affecting the efficiency of this process are fermentation temperature, carbon-to-nitrogen (C/N) ratio and substrate type. The study aimed to investigate the effect of temperature conditions, C/N ratio and different types of organic waste on biogas yield, particularly methane concentration, during anaerobic fermentation. Two temperature conditions were compared in the experiment: mesophilic (35°C) and thermophilic (55°C), using three types of organic waste: poultry manure, cattle manure and pig manure. The optimal C/N ratio was also studied to improve the energy efficiency of the process. Under thermophilic conditions, an increase in biogas yield by 20-28% and an increase in methane concentration by 5-10% were recorded compared to the mesophilic regime. The highest biogas yield (0.42 m3/kg of organic dry matter (OSR)) and methane concentration (70%) were achieved with poultry manure. In the thermophilic regime, the time to achieve stable gas production was also reduced to 7-8 days, which confirmed the effectiveness of this approach for industrial use. The thermophilic fermentation mode is more efficient for biogas production and increases the energy efficiency of the process. Optimisation of the C/N ratio and co-fermentation of different substrates further improved the efficiency. Poultry manure proved to be the most efficient substrate for bioconversion, which opens prospects for its use on an industrial scale. The results of the study can be used to optimise biogas fermentation technologies to improve the performance of biogas plants and reduce energy costs. |
URI: | http://188.190.33.55:7980/jspui/handle/123456789/14268 |
Type: | Article |
Appears in Collections: | Статті |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Стаття 2.pdf | 502,6 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.