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Abstract. In order to create automatic 

systems for planting energy willow, it is 

important to study the process of gravitational 

unloading of cuttings. When constructing a 

mathematical model of this process, planting 

material was characterized as a pseudo-fluid 

consisting of a discrete component (cuttings) 

and a gaseous medium (air), and the gravity 

unloading itself was considered from the 

point of view of hydrodynamic multiphase 

systems using the corresponding general 

equations for characterizing the motion. By 

applying the Laplace transform to determine 

the Fourier coefficients, we obtain a system of 

linear algebraic equations of the velocity of 

motion of such a pseudo-fluid. 

Keywords: energy willow (salix 

viminalis), planting automation, mathematical 

model, Laplace transform, multiphase system 

 

INTRODUCTION 

 

As theoretical studies, in the direction 

of unloading bulk materials, show, this 

problem is far from solved. Numerous studies 

of the process of gravitational outflow of 

materials made it possible to establish only 

some dependencies that explain the essence of 

this process (Bagnold, 1954; Bohomiahkih, 

Pepchuk, 1985; Gyachev, 1992; Savage,  

Cowin, 1999; Zenkov et al. 1966). It is due to 

the complexity of ensuring uniform 

continuous movement till now, there is no 

universal power device that works effectively 

with any bulk material, and the variety of 

material requiring unloading contributes to a 

further search for justifications for the 

movement of a particular material. So in this 

study, such material is cuttings of plants. The 

need to study this issue is dictated by the 

increasing popularity of fuels from bioenergy 

crops, which require fast and efficient 

machines to create the so-called energy 

plantations to increase their volumes. The 

most common energy willow in Ukraine is 

vegetatively propagated by cuttings 20-25 cm 

long and 5-20 mm in diameter (Frączek, 

Mudryk, 2005; Dziedzic et al. 2017; Hutsol et 

al. 2018; Yermakov et al. 2018). 

Today, such material is planted with 

planters in which planting material is supplied 

exclusively by hand, which significantly 

limits the possibility of increasing the 

efficiency of the units. A theoretical study of 

the cuttings’ movement and the 

implementation of the results in practice can 

be of help in creating a planting machine. 

 

 

 
Figure 1. Planting material of energy willow 
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In accordance with the scientific 

direction at the State Agrarian and 

Engineering University in Podilia “Research 

on workflow and parameters of the feeling 

mechanism for cuttings in energy willow 

planting” (state registration number 

0119U100945), an automated system for 

feeding and selecting planting material for 

wood energy crops is being developed. 

One of the first steps in this work is 

the construction of a mathematical model of 

the process of gravitational flow of rod-

shaped materials from slot hoppers 

(Yermakov, Hutsol 2018; Yermakov et al. 

2019). 

 

MATERIALS AND METHODS 

 

In previous works, we have already 

worked out general principles for constructing 

a mathematical model of the process of 

unloading cuttings from the hopper, 

determined the boundary conditions and 

characteristics of their movement (Yermakov 

et al. 2018; Yermakov, Hutsol, 2018; 

Yermakov et al. 2019). 

The model of the hopper was taken as 

the basis (Fig. 2), in which the consideration 

of the process is limited to the two-

dimensional model (in the plane ), since 

it is assumed that the movement of cuttings in 

the hopper is independent of the coordinate 

, due to the presence of walls parallel to the 

plane  that restrict movement cuttings 

along the axis . 

 
Figure 2. The design scheme of the hopper 

with cuttings 

 

Moreover, based on an analysis of 

existing solutions, a number of assumptions 

were made, which made it possible to 

consider the gravitational unloading of 

cuttings from the point of view of 

hydrodynamic multiphase systems. In 

accordance with this approach, the set of 

cuttings is considered as a pseudo-fluid 

consisting of two phases: a discrete, formed 

by cuttings and a continuous phase (gas-like 

medium between the cuttings) (Yermakov et 

al. 2019). Each of these phases is considered 

as a continuous medium, which allowed us to 

consider unloading as the motion of a viscous 

incompressible pseudo-fluid, the equations of 

motion of which were presented in the 

following form (Sous 1971; Nyhmatulin 

1978). 

 

           (1) 

 

 (2) 

 

               (3) 

 

               (4) 

where  are the unit vectors of the 

Cartesian coordinate system, 

1,VV


  - velocity field of discrete and 

continuous phases, 

1,PP  - pressure of discrete and 

continuous phases, 

 - acceleration of gravity. 

 

RESULTS AND DISCUSSION 

 

Basic assumptions about the nature of 

the motion of a two-phase pseudo-fluid. In the 

previous works of the authors (Yermakov et 

al. 2019), the formulation of the initial-

boundary-value problem of the motion of a 

two-phase pseudo-fluid is given, which 

simulates the process of unloading cuttings 

from the hopper. The equation of motion of 

this pseudo-fluid is nonlinear integro-
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differential equations. This significantly 

complicates the solution to these equations. 

However, under certain assumptions about the 

nature of the motion of the pseudo-fluid, these 

equations can be simplified. This made it 

possible to obtain their solutions in an 

analytical form. 

Let us formulate these assumptions. 

To do this, we introduce dimensionless 

variables by the formulas 
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where T is the characteristic time, L is the 

characteristic length size, V0 is the maximum 

velocity of the pseudo-fluid. 

In these variables, the equation of 

motion (1) - (4) will take the form 
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From (6), (7) it follows that if the 

quantity 
LTV0  is sufficiently small 

,10 
L

TV

      (9) 

 

then in equations (6), (7) we can neglect 

nonlinear members of the type  uu


, , 

  uuuu


 11 , . As the quantities LTV ,,0

we choose the following; AV 0  - maximum 

speed of vibrations, 2T  - period of 

vibrations, aL 2 - circumference of the 

cross-section of the cutting. Then inequality 

(9) takes the form 
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Thus, if the amplitude of the vibrations 

is sufficiently small, then in equations (6), (7) 

the nonlinear terms are small. In what 

follows, we will assume that inequality (10) 

holds. 

Further, since 1


 is the density of air, 

  is the averaged density of cuttings, the 

quantity is 

.11 




    (11) 

 

Therefore, the third and fourth terms 

on the right side of equation (6) can be 

neglected. 

In addition, since the volume 

concentration of the cuttings 1 , and the 

coefficient of kinematic viscosity of the air 

(continuous phase) 1  is small (
s

m2
5

1 10 ), 

the first and second terms on the right side of 

equation (7) can be neglected. 

Thus, based on the assumptions made 

about the nature of the motion of the two-

phase pseudo-fluid, equations (6) - (8) are 

simplified and take the form 
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The notations are introduced here. 
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Equations (12) - (14) are the basis for 

describing the process of unloading cuttings 

from the hopper. To these equations it is 

necessary to add initial and boundary 

conditions, which in the new notation have 

the form: 

Initial conditions 
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Boundary conditions 
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Application of the Laplace transform 

to the equations of motion of a two-phase 

pseudo-fluid.The solutions of equations (12) - 

(14) can be found using the Laplace 

transform. 

Before applying the Laplace 

transform, we determine the pressure  . To 

do this, we act by differential operation div  

on the left and right sides of equation (12). 

Then, taking into account equations (14), we 

have 
.0    (26) 

Assuming that the pressure   is 

weakly dependent on the variable 1x
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from (26) we obtain 
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Integrating (27), we have 
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where C1and C2 are constant values 

independent of the variable 2x . The constants 
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C1and C2 can be determined from the 

boundary conditions on the free surface of the 

layer of cuttings and on the border of the 

discharge window of the hopper. 

Neglecting the influence of the 

atmosphere and assuming that at the boundary 

of the discharge window the pressure 

coincides with the standard pressure 

ghpст 
, we obtain 
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Let us substitute (29) into (12). After a 

series of transformations, we have 
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We introduce the Laplace transform 

with respect to the time variable  t for the 

velocity fields u
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 and 1u
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 of the discrete and 

continuous phases of the pseudo-fluid 
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Let us apply the Laplace transform to 

(30) and (13), (14). Then, taking into account 

(31), using the property of the Laplace 

transform and the formula 
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Having determined from (36), (37) the 

Laplace transform 1U


 of the discrete phase 

velocity, from (33) it is possible to determine 

the Laplace transform of the continuous phase 

velocity 
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Thus, to solve the problem, it is 

sufficient to determine the velocity of the 

discrete phase of the pseudo-fluid. 

In addition to equations (36), (37), it is 

necessary to add boundary conditions (23) - 

(25), which, after applying the Laplace 

transform, are reduced to 
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Let us find a solution to problem (36), 

(37). To do this, we pass from the vector form 

to the scalar one. 
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Equations (43) - (45) must be satisfied 

in the volume of the hopper. Continue the 

functions U1and U2 beyond the hopper to the 

rectangle 

 

,
2

ctg
2

ctg 0
1

0

L

b

L

h
x

L

b

L

h
    (49) 

L

h
x 0

20 
   

In the following way: U1 will continue 

with zero, and U2 with a constant 
d

. 

Then equations (43) - (45) will be 
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We will seek a solution to these 

equations in the form of Fourier series in the 

variable 1x
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Here the quantities nnnn BBAA 2121 ,,,
 

are unknown functions of the variable 2x . 

To find these functions, we substitute 

(50) and (51) into equations (43) and (44). 

Making the necessary calculations, we will 

have 
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and the dot denotes the operation of 

differentiation with respect to the variable 2x . 

Next, we substitute (50) and (51) into 

equation (45). We will obtain 
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The general solution of equations (52), 

(53) can be represented as 
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where 

nnnnnnnn DDBBCCAA 21212121 ,,,,,,,
 are 

arbitrary constants. 

Since n depends on the parameter q  

of the Laplace transform (see (31)), which, 

generally speaking, is a complex number, for 

the root n  we choose the branch for which 

.0Re n  
As follows from (56), the sought 

quantities are the sum of two terms. One of 

them with the increase n  increases 

exponentially, while the other decreases. For 

the convergence of infinite series (50) and 

(51), exponentially growing terms should be 

discarded. Therefore, exponentially 

decreasing terms should be left in (56). 
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


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


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
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     (57) 

Now we substitute (56) into (57). Then 

we have 

 

1 2
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2
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n n n

n n n
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A B

n

M
A B

n






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  (58) 
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In particular, it follows from (58) that 

02010  BB
. 

In view of the above, for solving 

equations (43) - (45), we obtain the following 

formulas 

 

22

1 10

1

1 1 2 1

2 2
sin cos ,

n xx

n

n

n n

U A e e

n n
B x B x

M M

 

 






  

 
  
 


  (59) 

2

2

0

1 1 2 1

2 2
cos sin ,

n x

n

n n

dU e

n n
B x B x

M M





 






   

 
  
 


   (60) 

 

where  

.1
2

2











n

M
n


     (61) 

 

Formulas (59), (60) give a general 

solution to the system of equations (43) - (45). 

 

CONCLUSIONS 

 

1. The construction of a mathematical 

model of the motion of cuttings of energy 

willow will automate the planting process. To 

date, planters are known exclusively with 

manual laying of planting material. 

2. The easiest way to move material 

during unloading is to move it under the 

action of gravitational forces. The theoretical 

justifications for such a movement do not 

have a single approach, and the specifics of 

the material for planting energy willow create 

additional difficulties for the development of 

a mathematical model of this process. 

3. Taking a number of assumptions, it 

is proposed to consider the gravitational 

unloading of cuttings from the point of view 

of hydrodynamic multiphase systems. In 

accordance with this approach, the set of 

cuttings is considered as an incompressible 

pseudo-fluid consisting of two phases: a 

discrete, formed by cuttings and a continuous 

phase (gas-like medium between the 

cuttings). 

4. The basic assumptions about the 

nature of the motion of a two-phase pseudo-

fluid were considered and substantiated, due 

to which some of the composite equations 

could be neglected, and the existing equations 

of motion were significantly simplified. 

5. By applying the Laplace transform 

to determine the Fourier coefficients, a system 

of linear algebraic equations of the pseudo-

fluid velocity has been obtained (see (59), 

(60)). 
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