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The effective implementation of the European Green Deal is based on closing cycles by means of 
reusing products and extending their durability, especially for steel products in the construction 
industry. The Life Cycle Assessment gives an opportunity to determine the potential impact caused 
on the environment by building structures and it is used mainly at the early design stage. At the same 
time, there are significant gaps when it comes to predicting properties of steel products at the last 
stage of the life cycle of existing buildings in the End of Life Stage (C1-C4) phases and especially D—
Benefits and Loads Beyond the System Boundary. This paper uses machine learning (ML) in order 
to solve the problem of predicting the reusability of construction steel based on the determination 
of its yield strength by a non-destructive magnetic method. This will give an opportunity to make 
informed decisions when using this steel again. The research uses machine learning approaches that 
include regression problems. However, the use of ensemble learning significantly improves quality and 
accuracy of the results, while demonstrating its advantage in combining multiple models for obtaining 
more accurate predictions. The research results show that the WeightedEnsemble ensemble method 
(which includes 8 models) has the best prediction accuracy (MSE = 441 MPa and RMSE = 21 MPa). 
This method has high accuracy and low delay of conclusion (IL = 0.119 s) when predicting the tensile 
strength limit (MPa) based on the data of non-destructive testing of structural steel products. . The 
innovation of the development lies in the ability to provide an automated tool to support informed 
decision-making for the reuse of building steel for construction site professionals. The accuracy of the 
ensemble model and its potential for integration with existing practices indicate significant progress in 
managing steel reuse processes at the final stage of the building life cycle – stage D.
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Active response to a number of negative global trends has triggered the rapid transition of the European 
Green Deal1, an EU economic development programme and a set of policy initiatives adopted in 2019 aimed 
at transforming Europe into a climateneutral continent2, improving the wellbeing of citizens, protecting 
biodiversity and greening the economy by 20503.

The trend of recent decades is the rapid increase in population to 9 billion in 2050, which will lead to a 
significant annual increase in demand for natural resources, with construction being the main consumer4. The 
construction sector plays a crucial role in the consumption of raw materials. As early as 30–40 years ago, the 
construction contribution to resource consumption was 40% of materials and a third of energy consumption 
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worldwide5. Today, the construction sector consumes more than 60% of extracted raw materials and produces 
40% of energy related CO2emissions6and acid rain agents. On average, each EU citizen consumes approximately 
4.8 tonnes of minerals for construction. At the same time, the environmental impact is caused by both mining 
and processing of construction materials, in particular through energy consumption—the industry accounts for 
36% of electricity generated and related emissions. Therefore, the responsible use of resources, global climate 
change efforts and clean production, which are the goals of the European Green Deal7,8, place the construction 
industry at the forefront of the sector’s efforts (Fig. 1).

According to studies by E. Nolasco9and Yeheyis M10. construction waste in some countries reaches the level 
of 25–60%. According to the research of Kibert Ch11., waste is generated at all stages of the life cycle of buildings, 
but the largest and most influential phase in terms of the generation of construction and renovation waste is at 
the end of the life cycle, which accounts for 50% of the total amount of waste. This is due to the use of linear 
models as opposed to circular economy models12. According to circular economy models, materials that have 
served their time should be reused. Structural elements should be reused, and according to Hopkinson P13., 
Zabek M14. and Finamore M15., they are to act as material banks for new buildings, while storing components 
and materials in a closed loop, Marin J16., Cai G17.. The difficulty of implementation is due to the fact that 
according to Fernanda G18. this kind of innovation takes much longer to implement, since buildings are mostly 
unique projects with a large supply chain, compared to industry.

Due to the constant rise in raw material prices, the construction industry is rapidly adopting innovative 
solutions19,20, using efficient, environmentally friendly materials, reusing, recycling and extending the life 
of existing structures. However, the situation can only be changed dramatically if we move from the current 
linear consumption model to a more sustainable one21,22, using a circular economy approach that incorporates 
cyclical material flows in production systems and ecoefficiency to ensure a more sustainable construction sector 
. According to the circular economy concept, the construction industry needs to close cycles by reusing waste 
and resources, slowing down material cycles by reusing products and extending their durability, especially for 
steel products12,23.

As a building material, steel has its undeniable advantages. This material has one of the most favorable 
strength-to-weight ratios, which provides both versatility and high adaptability—buildings can be easily 
repurposed according to changing needs, and so the long-term viability of projects can be ensured.

The issue of steel products reuse and recycling is increasingly being considered by researchers24–26. However, 
although the overall level of steel reuse and recycling in developed countries is approximately 93–95%27, in most 
cases it is recycling, and only up to 4–5% of steel products are reused by extending the durability of structures. 
The main problem with the reuse of metal building products is testing and verification of material properties, 
and research in this area is currently limited. To evaluate the properties, Fujita and Masuda28proposed a non-
destructive evaluation procedure. The results obtained by researchers were evaluated according to Japanese 
standards and found to be in line with the design specification. A study of the reuse of steel structures without 

Fig. 1.  Clustering of Research Areas between the Most Used Keywords on the Green Deal in Renovation of 
Buildings in 2020–2024.(Source: VOS viewer mapping of authors’ keyword analysis from Scopus database, 
10.9.2024).
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melting showed that increasing their durability can improve energy efficiency and reduce carbon dioxide 
emissions by up to 30%29,30. The creation of a closed-loop economy should combine the recovery and reuse 
of steel products from decommissioned buildings. Most research on the reuse of structural materials from old 
buildings focuses on methods to improve the quantification of recycling and quality indicators rather than on 
product recovery and direct reuse.

Literature review
Modern practice in the construction industry pays little attention to the possibilities of steel reuse and recycling. 
In Australia, research by Tucker31found that only 11% of steel materials and components from demolished 
office buildings are reused and only 58% of them are recycled. In addition, 31% of them are thrown into the 
landfill, which is 45% of the building’s embodied energy. In the United Kingdom, the overall average recovery 
rate for steel from buildings at the end of their life cycle can be as high as 96%32. At the same time, reuse of steel 
products does not exceed 4–15%, depending on the type of material used. Researchers determined the following 
reasons for such alarmingly low rates of reuse: lack of detailed knowledge of the properties of the product and its 
history of use (this can be important, for example, if the component has been subjected to fatigue loading33), it 
is difficult to guarantee durability of reusable products34and coated products35, and for light-weighted structures 
it is difficult to ensure integrity of elements.

When reusing steel, researchers identify a number of problems to be solved. To check the suitability of 
steel elements obtained during the dismantling of structures as components of products (Brown, D.)36a set of 
measures must be implemented. An audit of the building (the one the steel products were removed from) must 
be conducted and the date of construction must be indicated in the documentation (the author believes that the 
date of construction will be close to the date of manufacture of the product). The contractor must establish that 
the steel element is a derivative of the building structure, which was erected after 1970, and was not subjected to 
significant dynamic loads, effects of high temperatures during a fire. If necessary, after an external inspection, 
fault finding of external cracks of welded joints can be carried out by means of using the magnetic powder method 
in order to make sure that there is no significant loss of the effective section of the steel product due to corrosion 
(a loss exceeding 5% of the element thickness is considered significant). Next, the supplier must measure the 
cross-sectional dimensions in at least three locations, if unknown, and compare the resulting geometric sections 
with the normative ones (BS EN: 1090; 1993; 10,029; 10,034; 10,051; 10,055; 10,056; 10,204; 10,210; 10,219; 
10,279). If there are minor deviations, three places along the elements should be selected for comparison with 
the nominal values. Such a procedure involves significant risks regarding a long-term operation of the used steel 
elements, and the use of traditional mechanical tests does not guarantee stability of the entire length or section 
and is associated with partial destruction of the product37. Recent research on the use of automated process 
control systems based on machine learning models38 is innovative and points to further areas of improvement.

Existing industrial or agricultural buildings were not built with recycling in mind and therefore do not have 
a high recycling potential—the amount of embodied energy and natural resources used in a building that can 
be made usable by recycling after demolition. This does not allow for a significant reduction in energy and raw 
material extraction over the long term when disposing of such structures.

Steel is mostly recyclable and scrap can be turned into steel of the same (or higher or lower) grade depending 
on the smelting and processing technology. The final economic value of a product is not determined by the 
recycled steel content, and there are many examples of high value products that contain large amounts of 
recycled steel. We have conducted a number of studies on the use of recycled metal waste for the production of 
rolled iron and steel39,40, including the use of modifiers41and evaluated their plasticity42. Based on these studies, 
a hypothesis was formed to create an automated system for reliable inspection, testing of existing structures and 
their restoration based on an approach using machine learning models and non-destructive testing of properties.

Based on the assessment of existing research, it has been found that there are significant gaps when it comes 
to predicting properties of steel products at the last stage of the building life cycle—stage D. On the one hand, 
the existing data sets are quite limited, on the other hand, the development of highly efficient ML models and 
ensemble models is necessary. This research is aimed at solving this problem, while focusing on the following 
tasks. The main goal is to evaluate the LCA of a steel component structure and create a reliable ML method that 
can predict the possibility of reusing the most common structural steel based on the determination of its yield 
strength (σ0.2) by means of using a non-destructive magnetic method at stage D of the life cycle of a building 
structure. To achieve these goals, a reliable experimental data set was collected within this research. This data set 
was used to predict the change in yield strength of steel after long-term service.

The innovation of the development lies in the ability to provide an automated tool to support informed 
decision-making for the reuse of building steel for construction site professionals. The accuracy of the ensemble 
model and its potential for integration with existing practices indicate significant progress in managing steel 
reuse processes at the final stage of the building life cycle – stage D.

The study aims to bridge the gap between academic research and practical reuse of building steel at the last 
stage of the building life cycle – stage D. It is proposed to use an automated tool to support informed decision-
making for the reuse of building steel after operation based on the use of an ensemble learning model with non-
destructive testing of properties.

The research is a significant contribution to the current state of the art in life cycle management of construction 
steel reuse in stage D. The study fills a critical gap in existing traditional inspection methods (mostly manual) 
by introducing the use of an ensemble model with non-destructive condition assessment, offering an automated 
solution in real time. The innovation lies in the ability to retrain the ensemble model on new data sets of 
different construction steels after various impacts. This allows the control to be adaptable to different building 
contexts. The research also not only pushes the technological boundaries of the industry, but also has practical 
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implications that could potentially lead to greater use of steel products for post-construction and improve the 
safety of existing structures after unplanned external impacts.

Material and methods
The materials and methods of this paper, namely the dataset used for the research, and the modeling and 
evaluation techniques, will be presented in this section.

For research, samples made of construction steel containing 1.36–1.65% Si, 0.56–0.8% Mn (analogues of 
13Mn6, 9MnSi5, SB49) were used. This steel is widely used in construction, while the installation of welded 
structures in the form of beams, channels, bars, corners, sheets and strips. Chemical composition of this steel is 
shown in Table 1.

To assess the effect of strain load on samples made of the construction steel and establish the relationship 
between the change in the structural state and the coercive force, systematic studies were conducted in 
production. Samples of size 6.2 × 20 × 270  mm were selected for researches. The average load (49 KN) that 
should be applied to create the stress value in the samples corresponding the beginning of plastic deformation of 
steel (σ0,2 = 280 MPA) was determined. Samples stretching was performed in increments of 0.1 σ0,2 = 30MPA on 
a tensile testing machine (MR, MR-500, Ukraine). To predict properties, the data obtained for a 5-year period 
at various enterprises are shown in the dataset. Various machine learning models and model ensembles were 
applied to their processing.

To assess the mechanisms underlying the relationship between ultimate bending strength (MPa) and 
structurally sensitive characteristic—coercive force (A/cm), a batch of 300 samples was studied. Sampling took 
place at different intervals of the study period, and samples were cut after testing at each load level. Microfaces 
were prepared for such samples and the metal microstructure was analyzed.

To estimate the yield strength of samples made of the construction steel by non-destructive testing, the method 
of measuring the magnetic parameter—the coercive force (Hc, A/cm) was used. The magnetic parameter was 
evaluated immediately after the load was removed, after 70 h, and after 100 h. Method of conducting coercive 
force measurements is given in the industry standard 29.32.4–37–532 developed by us. The measurements 
were carried out using portable magnetic structuroscope–coercimeter (MSC, КRM-C, Kharkiv, Ukraine). The 
device allows to perform local non-destructive testing (the control area is equal to the cross-sectional area of 
the device probes) by coercive force in the measurement range of 1.0–60.0 A/cm with an error of not more 
than 2.5%. The coercive force is measured by controlling the residual magnetic density shift value in a closed 
magnetic circuit. The circuit is created by a magnetic converter system, the poles of which are closed by the 
controlled sample. The measurement cycle includes magnetic preparation (duration 2 s), residual magnetization 
compensation (2 s), Hc calculation, and result indication. During the measurement, the area under the probe 
of the coercimeter overhead converter is magnetized to saturation with pulses with an amplitude of 3.0 A, after 
which the residual magnetization field is automatically compensated. The value of the coercive force indicator is 
calculated according to the value of the compensation field.

Life cycle assessment research
The LCA approach in the European construction sector is regulated by international standards ISO14040:2006 
and ISO 14,044:2006. LCA makes it possible to assess the potential environmental impact of building structures 
and take into account changes in the environment during their life cycle. For the field of construction, the life 
cycle phases are defined by EN 15,978 and EN 15,804 standards (Fig. 2). The BS EN 15,978:2011 method is likely 
to be the dominant calculation method used in the construction industry43, so the life cycle classification in this 
information document is based on BS EN 15,978:2011.

The Product Stage phases (A1-A3), Construction Process Stage (A4-A5) and Use Stage (B1-B7) phases are 
sufficiently investigated using the LCA approach44. Most researchers focus on the evaluation of individual stages 
of the life cycle of construction structures, or on the early stage of design45. So Moncaster M46,47. investigates a 
tool for estimating carbon and energy costs throughout the life cycle of buildings to be used at an early design 
stage.

At the same time, the End of Life Stage phases (C1-C4) and especially D—Benefits and Loads Beyond the 
System Boundary are insufficiently studied. Module D quantifies carbon impacts beyond emissions over the 
life cycle of a building. It recognizes the concept of “designing for reusing and recycling” as it demonstrates the 
benefits of reusing, recycling and energy recovery. The research by Eva Martinez48, devoted to the study of LCA 
in the End of Life Stage phase of the life cycle of buildings, made it possible to form a set of tools for recording 
environmental data during various options for demolition of built structures. It has been established that for 
traditional demolition, the main environmental aspect consists in transportation of waste from the demolition 
site to the final disposal site. For selective demolition of buildings, the largest impact on LCA is caused during 
transportation of waste from the demolition site to the treatment plant and during transportation of non-
recyclable fractions to the final disposal site, another significant impact is caused during fuel consumption of 
the hydraulic demolition equipment and the loading and unloading equipment of the treatment plant. The final 
phase of EC recover (module D) is described as a carbon credit that can be recovered through a certain future 
use of the materials.

C Si Mn S P Ni Cr Cu Fe

0.10–0.12 0.56–0.80 1.36–1.65 0.024–0.030 0.018–0.025 0.020–0.030 0.02–0.30 0,02–0.08 96–97

Table 1.  Chemical composition of the construction steel (wt.%).
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The reason for the small number of publications on Modules C and D is that there are two practical problems 
associated with conducting an LCA for a building at an early stage. The first problem consists in individuality 
of the projects of most buildings. This means that the materials and processes will be different for each separate 
project. Many of them will be determined at later stages of design, and some will be clarified immediately before 
the start of the construction of the object on site. The second problem is the lack of data for all stages of the life 
cycle. Presence of trade secrets and the lack of a culture of open data among manufacturers of building materials 
and components make it difficult to obtain data on the impact of products on the environment throughout the 
entire life cycle, despite the presence of standards developed in individual countries, in particular such standards 
as BS EN 15,80447.

Fig. 2.  Building life cycle stages (adapted from BS EN 15,978:2011).
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Calculation of Life Cycle Assessment (LCA) indicators was carried out in the Solid-Works Sustainability 
software environment based on generally accepted approaches49,50.

International standards ISO 14,040 and ISO 14,044 are used to implement Life Cycle Assessment (LCA) 
in SolidWorks Sustainability. The ISO 14,040 standard establishes the principles and general framework of life 
cycle assessment (LCA), it includes definition of purpose and scope, inventory analysis, impact assessment 
as well as interpretation of results. The 14,044 standard provides detailed requirements and guidance for 
conducting a life cycle assessment, including data management, life cycle modeling and reporting. SolidWorks 
Sustainability uses the GaBi LCA Database, which contains detailed data on the environmental impact of various 
materials, processes, and energy systems. The use of the ISO 14,025 international standard allows SolidWorks 
Sustainability to regulate transparency and reliability of information about environmental characteristics of the 
product provided in the form of a declaration. This approach made it possible to carry out an ecologically sound 
assessment of the materials that make up building structures and provided results that are close to international 
standards.

This allowed us to conduct an environmental analysis, taking into account the entire life cycle of metal 
structures, which includes ore mining, material production, use of the structure, end-of-life disposal and all 
transport between these stages. The input data were taken from the SolidWorks database of materials and 
their properties, with Material Recycled Content of 18%; 500  km of material transport from production to 
construction by road freight transport; Manufacturing Electricity of 0.19 kWh/kg; Manufacturing Natural Gas 
of 1476.6 BTU/kg; Scrap Rate of 9.67%.

ML algorithms
Individual machine learning, were studied and, also, they were combined in ensemble approach to improve the 
model’s stability and predictive power. This allowed to get a higher predictive performance compared to the single 
model49–51. The ensemble52finds ways to combine multiple machine learning models into a single predictive 
model53–55. Some models are well suited for modeling data at plastic deformations up to 150 MPa, while others 
do well with strain intervals close to 250–300 MPa—the Ultimate bending strength limit. Instead of forming a 
single complex model, the ensemble model learns several simple models and combines its results to make a final 
decision56–60. Combined strength models compensate the individual variations and biases. Ensemble learning 
will provide a composite prediction when the final accuracy is better than that of individual classifiers.

In the current study, individual machine learning models, after verification were included in 10 ensemble 
models of WeightedEnsemble_L2 and tested to predict ultimate bending strength based on the non-destructive 
magnetic control method discussed in the following sections (Fig. 3). The WeightedEnsemble_L2_FULL is a 
trained regression model whose objective is to minimize the “mean_squared_error” quality metric. 114 rows 
were included in the evaluation dataset. Scores are calculated using k-fold cross-validation resampling method 
that train a machine learning algorithm on different subsets of the dataset. A score is then calculated for overall 
performance by averaging the resulting performance metrics for each trial. First-level ML models were included 
in the second-level WeightedEnsemble_L2 model if their accuracy on the training sample was equal to or greater 
than K, where the value of K was determined by the automatic algorithm. It should be highlighted that for 
assuming ML algorithms, the k-fold cross-validation with different K was used to identify the appropriate K with 
higher performance61–65.

We trained several base models. To find the best combination for our dataset, ensemble mode runs 10 trials 
with different model and hyper parameter settings. Then combines these models using a stacking ensemble 
method to create an optimal predictive model. We used a Bayesian optimization algorithm to automatically 
configure machine learning hyperparameters. The effectiveness of its use has been confirmed for solving complex 
problems with nonconvexity53, multimodality, and high evaluation costs.

Description of database
In this study, there are a total of 8 data sets on the deformation effect on the structure and magnetic properties 
of the studied material, which were collected at several enterprises. The data was analyzed based on seven 
characteristics. These seven characteristics were used as parameters in the following order: ultimate bending 
strength—target column; value Hc and σst.dev measured immediately after removing the load; Hc and σst.dev after 
70 h; Hc and σst.dev after 100 h.

Data normalization
In this paper, forecasting is based on a set of data obtained over a 5-year period at several enterprises. To build 
a forecasting model and conduct statistical analysis, the results of laboratory experimental tests were applied. In 
this study, there are a total of 8 data sets from different enterprises on the deformation effect. The data sets used 
for machine learning had a significant range of values (σ0.2 = 0–294 MPa, Hc = 3.52–7.45 A/cm, σst.dev = 0.01–
0.14). In this case, some machine learning models do not work effectively. Data normalization was used. It is 
accomplished using the max–min mapping function and takes the following form. In an equation where Xn is 
normalized data, Xmin and Xmax are the minimum and maximum values of each input variable, respectively, and 
X is the original data set to be normalized. Data normalization has improved the accuracy and stability of the 
prediction model.

Statistical analysis. To measure machine learning model performance we used the following metrics and 
validation techniques. Models results were compared to test their effectiveness according to MSE (Mean Squared 
Error), RMSE (root mean squared error), R2, and MAE (Mean Absolute Error), which were calculated as follows:

	
MAE =

∑n
i=1 |oi − yi|

N ,� (1)
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MSE =

∑n
i=1(oi − yi)2

N ,� (2)

	
R2 =

[ ∑
(oi − o) (yi − y)√

(oi − o)2
√

(yi − y)2

]2

� (3)

	
RMSE =

√
1
n

∑n

i=1
(oi − yi)2,� (4)

where N is the number of samples, and yi and oi are measured and predicted values, respectively. To determine the 
deviation, how different the predicted and average values of machine learning models differ, we used the mean 
absolute error indicator. MAE is defined as the sum of absolute errors divided by the number of observations. 
The values ranged from 11.55 to 44.30, with smaller numbers indicating that the model matched the data better.

Results and discussion
Our research is part of a comprehensive work on predicting the properties of met-al products by a non-destructive 
method during their life cycle. In this work, the possibilities of predicting the ductility limit of construction steel 
by a non-destructive magnetic method—coercive force after applying operational deformations within or equal 
to the plasticity limit of the material using machine learning algorithms are investigated. In many cases, it is not 
possible to estimate the load value in advance, and for stable operation of the product, reliable forecast estimates 
obtained without destruction are necessary.

Fig. 3.  Flowchart of the methodology of machine learning adopted in the current study.
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Life cycle assessment
We performed a Life Cycle Assessment (LCA) for metal materials as part of the steel structures of the elevator 
tower and an additional grain cleaning unit for grain storage facility with a capacity of 22.4 thousand tonnes 
(2nd start-up complex for 18 thousand tonnes) in Murafa village, Kharkiv region. The total weight of the metal is 
12.95 tonnes (Table 2). The structure includes: bent steel channels with equal shelf lengths—1.35 tonnes; square 
steel pipes—6.49 tonnes; angle steel flutes—2.02 tonnes; heavy plate steel—1.07 tonnes; corrugated steel—1.86 
tonnes; I-beams for suspended walkways—0.16 tonnes. The metal of grains weight of the bins is 3,839 tonnes. 
The environmental life cycle analysis resulted in the following environmental indica-tors and environmental 
impact indicators: Carbon Footprint (kg CO2), Energy Consumption (MJ), Air Acidification (kg SO2), Water 
Eutrophication (kg PO4).

A comparative analysis of the contribution of the main factors, expressed as a percentage, to the final 
environmental assessment of the LCA of metal structures for periods from the beginning of construction—8 years 
and for the period of resource ex-tension after non-destructive testing and extension of the building’s service life 
to the projected period of 30 years was carried out. Scenarios used: A—baseline scenario for a new building after 
1 year of operation; B—scenario of a traditional linear approach of demolishing a building in a short time and 
building a new structure, in which the emissions from the recycling of the remaining materials are added to the 
indicators of the new building; C—scenario in which, after the proposed measures, the operation of the building 
is extended to the planned 30 years.

It was found that the main contribution of 81.05–90.20% to the formation of the Car-bon Footprint (37,611 kg 
CO2), Energy Consumption (505639 MJ), Air Acidification (116 kg SO2), Water Eutrophication (17 kg PO4) is 
made by the costs of raw material extraction and steelmaking. The percentage of the production process associated 
with the moulding of the material is much lower: Carbon Footprint—9.22%, Energy Consumption—12.36%, 
Air Acidification—11.98%, and the smallest impact is for Water Eutrophication—3.66%. Taking into account 
that the End of Life period for steels is associated with recycling in the adopted calculation option—95%, and 
only a small share is recycled, the value of its contribution ranges from 4.06–5.57% for Water Eutrophication and 
Air Acidification, and does not exceed 2.5–2.6% for Carbon Footprint and Energy Consumption. Taking into 
account that the transport was carried out from domestic steel producers, which ensures circularity in the supply 
chain, the share of the transport component is insignificant and ranges from 1.04–2.12%.

Name of the Structural Element
(Weight, Tonne) Name of the Component Carbon Footprint (kg CO2) Energy Consumption (MJ) Air Acidification (kg SO2)

Water 
Eutrophication 
(kg PO4)

Bent steel channels
(weight 1.35 tonnes);
steel square tubes
(weight 6.49 tonnes);
equal angle steel
(weight 2.02 tonnes)

Material 1.786 23.569 0.0050 0.00050

Manufacturing 0.211 3.784 0.0009 4.30E-05

End Of Life 0.057 0.799 0.0004 4.77E-05

Transportation 0.024 0.349 0.0001 2.49E-05

Total* 20,483.657 281,025.776 62.6697 5.7488

Steel plates (weight 1.07 tonnes)

Material 2.037 25.981 0.0066 0.001904

Manufacturing 0.212 3.808 0.0009 4.33E-05

End Of Life 0.058 0.805 0.0004 4.80E-05

Transportation 0.024 0.351 0.0001 2.50E-05

Total* 2494.106 33,111.364 8.4599 2.1618494

Corrugated steel sheet (weight 
1.86tonnes)

Material 2.101 27.429 0.0054 0.000522

Manufacturing 0.2123 3.812 0.0008 4.34E-05

End Of Life 0.058 0.8058 0.0004 4.81E-05

Transportation 0.024 0.351 0.0001 2.51E-05

Total* 4455.146 60,259.722 12.4549 1.18768812

I-beams for suspended guides 
(weight 0.16 tonnes)

Material 1.839 24.184 0.0053 0.000483

Manufacturing 0.213 3.818 0.0009 4.34E-05

End Of Life 0.058 0.807 0.0004 4.82E-05

Transportation 0.024 0.352 0.0001 2.51E-05

Total* 341.272 4665.632 1.0671 0.09592416

Metal tanks (weight 1.86t)

Material 2.269 28.007 0.0068 0.00192376

Manufacturing 0.212 3.808 0.0008 4.33E-05

End Of Life 0.0579 0.805 0.0004 4.80E-05

Transportation 0.0237 0.3507 0.0001 2.50E-05

Total* 9836.938 126,576.053 31.3431 7.83217424

Total result 37,611.120 505,638.547 115.994 17.026

Table 2.  Results of the Calculation of Life Cycle Assessment Indicators for the Elevator Tower and the 
Additional Grain Cleaning Unit for a Grain Storage Facility with a Capacity of 22.4 thousand tonnes (2nd 
Start-up Complex for 18 thousand tonnes) for the First Year of Commissioning.
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Extending the service life of metal structures without recycling them can significantly improve the 
environmental performance of the LCA life cycle. Let’s consider 3 scenarios. Scenario A is a baseline with 
indicators for a new building after 1 year of operation. The second scenario B is when, after a critical impact, 
structural deformation occurs and after 8  years of operation, the commercial building is demolished and 
rebuilt in accordance with the traditional linear process. For Scenario B, the emissions from material recycling 
are added to the new building’s performance, as they cannot be used directly in the production of new steel 
batches. The third scenario—after the inspection, non-destructive methods are used to identify areas for which 
restorative actions are taken (welding, replacement of highly loaded structural fragments) and the building’s 
service life is extended to the planned 30 years. In this case, the indicators are significantly lower. According to 
the calculations, Scenario B is the most costly and negative in terms of environmental impact. Scenario C is the 
most efficient, with minimal environmental impact indicators. In this scenario, the time for putting the facility 
into commercial operation is also minimal, so the use of non-destructive testing to assess metal damage with the 
use of machine learning methods to predict the remaining service life is a timely and relevant area.

Dependence of the coercive force level on the steel load
The dependence of the coercive force level on the steel load was evaluated. It is established that for the curve Hc 
the tensile loads of construction steel are characterized by three zones (Fig. 4). When loaded from the initial state 
to 0.5–0.6 σ0.2, a uniform increase in the coercive force occurs according to the dependence (R = 0.89):

	 Hc = 3.55 + 0.54Nσ0.2� (5)

where Nσ0,2 is the load value relative to σ0,2 of the material. In this dependence, the free term characterizes the 
level of coercive force (has dimension [A/cm]), which corresponds to the structural state of hot-rolled steel 
without load. The coefficient of 0.54 characterizes the intensity of changes in the coercive force from the level of 
loads in the elastic area and has the dimension [Nσ0.2/MPa]. This zone is characterized by a predominant effect 
on the NS level of elastic stresses during sample stretching.

The second zone (0.6–0.9 σ0,2) is characterized by magnetic index uneven distribution. The decrease in Hc level to 
3.5–3.65 A/cm is due to metal deformation in local micro-volumes. This assumption is confirmed by a decrease 
in the spread of magnetic parameter values up to 4 times (the root-mean-square deviation decreased from 0.12 
A/cm (0.6 σ0.2) to 0.03 A/cm at 0.7 σ0.2) in the zones of such deformation. In the zone of loads that is close to the 
beginning of plastic deformation (0.95–1 σ0, 2), a significant increase in the level of coercive force occurs (1.5–2 
times compared to the derivative state). This is due to changes in the material structural state and increase in the 
level of its defect. Hc level change for such a zone can be described by the following equation (R = 0.89):

	 Hc = 4.14 + 37.1Nσ0.2,� (6)

where Nσ0,2 is the load value relative to σ0,2 of the material. The free term characterizes the level of coercive 
force corresponding to the structural state in the field of elastic stresses and local deformations under a load of 

Fig. 4.  Hc dependence of construction steel on the load value relative to its Yield Strength (σ0.2) with zones 
indication (a) where the relationships nature is changed. Microstructure of the construction steel: (b) – the 
beginning of individual ferrite grains deformation after a load of 0.5 σ0.2 (Zone I); (c) – almost all ferrite 
grains are deformed after a load of 0.7 σ0.2 (Zone II); (d) – the perlite component is not affected after a load of 
0.5 σ0,2 (Zone I); (e) – the perlite component is decorated with inclusions after the load of 0.7 σ0,2 (Zone II). 
Microstructure images (b, c) obtained in polarizing light using a metallographic microscope, and images (d) 
and (e) obtained by electron microscopy. The most characteristic areas corresponding to Zone II and Zone III 
are highlighted in red, respectively. Etching with 4% HNO3 solvent.
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4.7–4.9 t. The coefficient 37.1 characterizes the intensity of changes in the coercive force depending on the level 
of loads in the area of elastic and plastic deformations. The intensity of increasing of Hc coefficient of change for 
this zone is almost 70 times higher than elastic deformations (the first zone), which indicates the intensity of 
changes in the structural state of the material under the loads impact.

Data visualization
The data was analyzed based on seven characteristics: ultimate bending strength—target column; value Hc and 
σst.dev measured immediately after removing the load; Hc and σst.dev after 70 h; Hc and σst.dev after 100 h and their 
distribution is illustrated in Fig. 5.

Machine learning algorithms and ensemble learning
The correlation matrix of the dataset is presented in Fig. 6. The results of machine learning models were compared 
to test their performance according to the MSE (Mean Squared Error), RMSE (Root mean squared error), R2, 
and MAE (Mean Absolute Error) metrics (Table 3, 4) and (Fig. 7).

The main focus of this study was on using the capabilities of machine learning (ML) algorithms to solve the 
problem of predicting the reuse of construction steel based on the determination of its yield strength by the 
non-destructive magnetic method. Table 3 compares the algorithms of the models LightGBMXT, LightGBM, 
RandomForestMSE, CatBoost, ExtraTreesMSE, NeuralNetFastAI, XGBoost, LinearModel, NeuralNetTorch, 
and LightGBMLarge to solve this problem. However, the use of ensemble learning significantly improved 
the quality and accuracy of the results, demonstrating its advantage in combining several models to obtain 
more accurate predictions. We performed the optimization The results of the WeightedEnsemble ensemble 
method (10 models were analyzed) allowed us to obtain the best prediction accuracy (MSE = 441  MPa and 
RMSE = 21 MPa). Verification of the modeling results confirmed the reliability of the data obtained. In addition, 
with high accuracy, a low inference delay (IL = 0.119 s) was obtained when predicting the tensile strength (MPa) 
based on the data of non-destructive testing of structural steel products. This makes it possible to automate the 
inspection process and obtain more accurate data in real-world conditions.

Despite the possibility of justifying individual areas of the coercive force on plastic deformation dependence 
at the level of a small data sample, it is not an easy task to develop a model for predicting ultimate bending 
strength (MPa) using a non-destructive method Therefore, it is rational to use more flexible forecasting models 
based on machine learning. The best performance of the ML model is indicated by MAE values closer to 0. 
Value R2 approaching 1 indicates better modeling, while MSE, RMSE, and MAE values approaching 0 indicate 
better modeling. We used a nonlinear correlation of functions based on the Spearman rating ratio. The strongest 
positive correlation was found between ultimate bending strength (σ0,2) and indicators of coercive force (Hc) 
after 100 h (R2 = 0.76) and 70 h (R2 = 0.68) after removing the load. While the standard deviation of coercive 
force (Hc) after removing the load correlates with the levels of the magnetic parameter after 70 h (R2 = 0.67) and 
100 h (R2 = 0.53). This confirms our assumption that the material relaxation processes occur after the load is 
removed.

The smallest deviations of forecast data from the input data (MSE = 441  MPa and RMSE = 21  MPa) has 
an ensemble of WeightedEnsemble-t10 models. Despite a significant number of models-eight included in 
such ensemble—it has a low Inference Latency (IL = 0.119  s), i.e. the time it takes for ensemble of machine 
learning models to make its prediction after being given input information. The lowest Inference Latency index 
(IL = 0.101 s and IL = 0.111 s) is found in the WeightedEnsemble-t30 ensembles and the WeightedEnsemble-t90 
ensemble, but they have lower accuracy, the error rate is up to 20%. Due to the combination of prediction accuracy 
and Inference Latency, the most acceptable ensemble of WeightedEnsemble-t10 models was established. This 
particular ensemble is further called WeightedEnsemble and is further compared to machine learning models.

For the studied machine learning models, the best result is a tree-based algorithm that uses several decision 
trees on the entire dataset model ExtraTreesMSE-L1 (L1 – lasso regularization), for which MAE = 11.55 MPa. In 
this model, trees are randomly divided at each level. The decisions of each tree are averaged to prevent overfitting 
and improve forecasts. Each decision tree generates one forecast, and the final one is based on the majority 
forecast. Additional trees add some degree of randomization compared to the random forest algorithm. Despite 
the best MAE score, the ExtraTreesMSE-L1 model loses out in accuracy to the WeightedEnsemble-L2 ensemble 
(by 20.2% in MSE and 9.7% in RMSE). LinearModel has the greatest deviations (MAE = 44.30 MPa).

To check the compliance of the model, taking into account significant errors in forecasting, we used the root 
– mean-square error-MSE, which was defined as the average square of the difference between the actual and 
forecast values.

For the studied models, the root-mean-square error ranged significantly up to 645%. LinearModel models 
showed the worst match for significant deviations (MSE = 2846MPa2) and NeuralNetFastAI (MSE = 2846MPa2). 
And the best performance is the NeuralNetTorch machine learning model (MSE = 474MPa2) and the optimal 
values for this data set are the Weighted Ensemble model ensemble (MSE = 441MPa2).

Using the root Mean Squared Error (RMSE) allowed us to estimate the deviation of forecast data in the same 
dimension as the base parameter—ultimate bending strength (MPa). As expected, given the MSE metric, the 
LinearModel machine learning models (RMSE = 53.35 MPa) and NeuralNetFastAI (RMSE = 29.43 MPa) have the 
greatest deviations. The group for deviations of 24–26 MPa included several models based on RandomForestMSE 
(RMSE = 25.45 MPa), XGBoost (RMSE = 24.18 MPa) and two models with tree-based algorithms with gradient 
boosting – whose hyperparameters are adapted to work with large models LightGBMLarge (RMSE = 25.04 MPa) 
and with default hyperparameters LightGBM (RMSE = 24.81 MPa). The weighted ensemble model ensemble 
(RMSE = 21.01 MPa) and the NeuralNetTorch model (RMSE = 21.78 MPa) have the most accurate forecast.
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Using the R2 metric the proportion of variance of the regression model recall variable that can be explained 
by predictive variables was taken into account. If the RMSE indicator allowed to take into account the typical 
distance between the forecast and actual values, then R2 allowed to determine how well predictor variables can 
explain the deviation of the recall variable. For the studied machine learning models, the effect of the magnetic 

Fig. 5.  Feature details and histogram with the corresponding target distribution: (a) histogram of the target 
column—ultimate bending strength (MPa); (b, c) Hc and σst.dev; (d, f) Hc and σst.dev after 70 h; (g, h) Hc and 
σst.dev after 100 h. The lower plot provides the feature distribution and the upper—the corresponding target 
average with a confidence band of one standard deviation.
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Ensemble models ML model types* MSE (MPa2) IL (sec) RMSE (MPa) MAE (MPa)

WeightedEnsemble-t10 XGB, GBM, CAT, FASTAI, NN.TORCH, LR, RF, XT 441.174 0.119 21.004 11.746

WeightedEnsemble-t20 XGB, GBM, CAT, XT, RF 510.197 0.139 22.588 11.554

WeightedEnsemble-t30 XGB, GBM, CAT, NN.TORCH, FASTAI 505.81 0.101 22.49 12.815

WeightedEnsemble-t40 XGB, GBM, CAT, XT, RF, NN.TORCH, FASTAI 501.795 0.154 22.401 12.984

WeightedEnsemble-t50 XGB, GBM, CAT 499.161 0.204 22.342 12.045

WeightedEnsemble-t60 XGB, GBM, CAT, LR 458 945 0.145 21.423 12.258

WeightedEnsemble-t70 XGB, GBM, CAT, XT, RF, LR 499.161 0.204 22.342 11.434

WeightedEnsemble-t80 XGB, GBM, CAT, NN.TORCH, FASTAI, XT, RF, LR 458.943 0.145 21.423 12.258

WeightedEnsemble-t90 XT, RF 449.465 0.111 21.206 11.434

WeightedEnsemble-t100 XT, RF, NN.TORCH, FASTAI, LR 441.235 0.162 21.006 11.671

Table 4.  Proven model ensembles WeightedEnsemble_L2_FULL. Designation:* IL—Inference Latency; RF—
Random Forest, XGB—XGBoost, GBM—LightGBM, CAT—CatBoost, XT – Extra Trees, LR—Linear Models, 
FASTAI—Neural network fast.ai, NN.TORCH—Neural network Torch.

 

Name models* MSE (MPa2) MAE (MPa) RMSE (MPa) R2

LightGBMXT 542.376 14.035 23.289 0.933

LightGBM 615.544 13.511 24.810 0.924

RandomForestMSE 647.449 11.647 25.445 0.919

CatBoost 517.752 13.147 22.754 0.936

ExtraTreesMSE 530.909 11.554 23.041 0.934

NeuralNetFastAI 866.033 18.766 29.428 0.893

XGBoost 584.874 12.661 24.184 0.928

LinearModel 2846.089 44.360 53.349 0.648

NeuralNetTorch 474.634 12.063 21.786 0.941

LightGBMLarge 626.972 12.717 25.039 0.922

WeightedEnsemble 441.174 11.746 21.004 0.945

Table 3.  Comparison of studied ML algorithms.

 

Fig. 6.  Correlation matrix of dataset: ultimate bending strength (MPa)—target column; value Hc and σst.dev 
measured immediately after removing the load; Hc and σst.dev after 70 h; Hc and σst.dev after 100 h.
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parameter level, the coercive force (A /cm), and the mean-square spread of its values measured immediately 
after stretching the samples after 70 h and 100 h on the ultimate bending strength (MPa) is better (R2 = 0.94) for 
NeuralNetTorch. For the Weighted Ensemble model ensemble, predictor variables can explain the deviation of 
the variable in 95% of cases (R2 = 0.95), which again demonstrates the advantages of this approach in forecasting 
over using individual machine learning models.

Prospects for further research. The current work has several limitations that should be addressed in future 
research. Thus, due to the limited number of valid non-destructive testing (NDT) data sets in the current study, 
the experimental data set does not include a wide range of other structural steels in addition to the investigated 
steel. Such steels will differ in chemical composition and technologies for ensuring a complex of mechanical 
properties, which will need to be studied separately after conducting a larger number of experimental works 
for each grade of steel. This data set also does not include data on the high-temperature impact of an open 
flame due to a fire on the structural-phase composition of steel, which is possible for assessment at the last stage 
of the building’s life cycle—stage D. In our opinion, steel materials after such high-temperature exposure can 
only be used as a charge for steel smelting, due to the difficulty of predicting their durability without expensive 
destructive evaluation methods. For future forming a database of ML-models for non-destructive evaluation 
of materials for the End of Life Stage (C1-C4) phase and D—Benefits and Loads Beyond the System Boundary 
phase, it is necessary to ensure the possibility of direct calculation of the mechanical properties of steels and 
unify the test methods.

Conclusions
Previous studies have confirmed effectiveness of using Life Cycle Assessment at the early stage of building design 
and when forecasting the environmental impact of new buildings. However, there is considerable concern about 
the effectiveness of such forecasting in the End of Life Stage (C1-C4) phase and especially D—Benefits and 
Loads Beyond the System Boundary phase for already existing structures, which are mostly unique projects 
and can be modernized, rebuilt during their life cycle. In this study, empirical data were collected for LCA 
assessment and development of a reliable and accurate model for predicting the reusability of structural steel 
based on determination of its yield point by means of non-destructive magnetic method at the final stages of the 
construction object’s life cycle. A grain storage with a capacity of 22.4 thousand tons, consisting of mainly metal 
structures of the elevator tower and an additional grain cleaning plant with a total weight of 12.95 tons of metal, 
was studied. The input variables are the value of the magnetic parameter and the scatter of the measurement 
results, and the output variable is the level of stresses formed under variable loading in the range from zero to 

Fig. 7.  Prediction based on regression model WeightedEnsemble_L2: (a) Actual vs predicted plot; (b) Residual 
histogram. Original and estimated values of regression model WeightedEnsemble_L2 (c).
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the yield point of steel samples (up to 280 MPa). For forecasting, a series of experimental studies were conducted 
and processing was performed using machine learning methods.

Although the use of 10 machine learning algorithms, apart from Linear Model and NeurealNetFastAI, 
were found to be satisfactory in terms of accuracy (above 0.89), it was found that the use of ensemble learning 
significantly increased accuracy of the model. Regression accuracy increased up to 0.945 after using ensemble 
learning, and after additional hyperparameter optimization it reached the level of 0.984. and the mean-root error 
(MSE) decreased significantly.

The main conclusions of this study are that regression algorithms using ensemble learning can accurately 
predict the level of stresses in metal products of buildings at the end-of-life stages, and in group with them 
these regression algorithms can predict durability in operation when reused. In general, the results of this study 
showed that the future formation of a database of ML-models of non-destructive evaluation of materials in the 
End of Life Stage (C1-C4) phase and D—Benefits and Loads Beyond the System Boundary phase is possible 
and it requires a further research of a wide range of other construction steels and their production technologies.

Data availability
Abstracted data is available from the corresponding autor on reasonable request.
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